
Satellite crash course
Description Minimizing and maximizing the odds of crashing to ground.
Period Spring 2021

Languages & Libs Python
Tags Applied mathematics

Since hearing the news of a faling Chinese rocket booster Long March 5B and being reminded that Earth’s
surface is about 70% ocean, I got interested on how the orbital parameters affect the odds of crashing to
ocean vs. ground. I was nearly finished with the project when I realized that Earth is rotating under the
satellite, thus invalidating all the results! This doesn’t take orbits’ eccentricity into account either, but I’ve
heard that the athmospheric drag has a dendency of reducing it to zero as the orbit falls. Anyway, I found
the various "straight" paths around the globe interesting and decided to publish these results anyway. In
conclusion there are paths which spend only 9 % on top of land (including lakes) and 91% on top of ocean
or up-to 57% on top of land and 43% on top of ocean.

At first I started looking for a geographical dataset for Python. I wound an excellent article from towards-
datascience.com which introduced me to "ETOPO1 Global Relief Model" published by NOAA. It consists
of a 21601 × 10801 grid (≈ 223 million datapoints) of Earth’s surfaces height in reference to the sea level
(meaning lakes above the sea level as classified as dry land), having on average a measurement on every
1.5× 1.5 km2 area. We don’t need this kind of precision and can start by dropping 99% of the data, leaving
us with 2.3 million samples and each covering on average an area of 15 × 15 km2. However the dataset is
uniformy sampled in latitude & longitude coordinates, which means that poles are more densely sampled
than the equator. This doesn’t matter on some applications, but when calculating the average time spent
on top of ocean it is important to have an unbiased sample. This is easily fixed by dropping out samples
in proption to 1 − cos(lat). This drops about 36% of data, leaving us with 1.5 million samples and each
representing an area of 19 × 19 km2.

Figure 1: Parameterizations of different orbits (lon & lat) with highlighted local minima and maxima. A
satellite spends at minimum 9% of its time on top of land and at maximum 57%.

Once we have an uniform sample in lat & lon coordinates it is trivial to transform them to the unit
sphere in 3D cartesian coordinates. A great circle is parameterized by a 3D unit vector, and it consists
of points of which’s coordinates dot product with the unit vector is zero. Naturally we must allow some
tolerance to this, for example a ±100 km threshold corresponds to the dot product’s absolute value being

https://en.wikipedia.org/wiki/Long_March_5
https://towardsdatascience.com/create-interactive-globe-earthquake-plot-in-python-b0b52b646f27
https://towardsdatascience.com/create-interactive-globe-earthquake-plot-in-python-b0b52b646f27
https://www.ngdc.noaa.gov/mgg/global/
https://www.noaa.gov/
https://en.wikipedia.org/wiki/Spherical_coordinate_system#Cartesian_coordinates


Niko Nyrhilä 2

≤ 100 km/(2π ∗ 6370 km) ≈ 0.00245. The easiest way of finding optimal great circles (minimizing or
maximizing the dry land) is to brute-force the result on a search grid and finding local minima and
maxima. The result of this is shown in Figure 1 (I learned only afterwards that this is called the Funk
Transform). Again, an uniform sampling in lat & lon coordinates is not uniform in 3D space but it isn’t
as important here as it is in the underlying ocean vs, ground data. We just need to be mindful that the
parameter space near the poles is over-sampled, and apply a secondary filter to ignore near duplicate
great circles. The similarity is measured by the dot product of their unit vectors, and it approaches one
(being the cosine of the angle between them) when the vectors point to a similar direction.

Figure 2: Some locally optimal paths, either minimizing or maximizing the time spent on top of ocean.

Once the filtering is done we can visualize most distinct paths on a map as shown in Fiugre 2. This doesn’t
use any fancy map projection, so polar regions are exaggerated in size. It is interesting how many of the
oeacn-maximizing paths hug the coastal line. Some zoomed regions are shown in Figure 3, which also
shows how polar regions are more sparsely sampled in lat & lon coordinates to make them uniform in the
cartesian space.

Figure 3: Some locally optimal paths in detail.

https://en.wikipedia.org/wiki/Funk_transform
https://en.wikipedia.org/wiki/Funk_transform

