Matching puzzle pieces together . . .
Description Using generated puzzles to train a neural network. - ‘ ‘
e |

Period Summer 2021
Languages & Libs Python, Keras
Tags Computer Vision

Some people enjoy solving puzzles in the old fashioned way, but engineers would like to automate tedious
tasks like that. This is a well-suited task for supervised learning, but naturally it requires training data.
Gathering it from real-life puzzles would be time-consuming as well, so I opted for generating it instead.
This gives a lot of control on the data, but the resulting system might not even work with real-life inputs.
There are also several different styles of puzzles, but in this project each "base-piece" is a rectangle of
identical size. An example 3 x 3 puzzle is shown in the thumbnail.

A "normalized" puzzle edge is defined as a set of Bezier curves, and is constrained to always start from
coordinates (0,1) and to end to (1,0). In addition its slope is 100% horizontal at the beginning and at
the end. This leaves them with four degrees of freedom. The curve consists of three Bezier curves, which
are shown in different colors in Figure 1. They are specified by three control points, which are shown
red. Black dots are either hard-coded beginning and ending coordinates, or interpolated as the midpoint
between two red control points. For simplicity this code generates only symmetrical edges, but naturally
it could be extended to more complex and asymmetric shapes.

0.6 : 7

0.44 >

0.2 4 —

0.0 e
-2.0 -18 -16 -14 1.2 -1.0 -0.8 0.6 0.4 -0.2 0.0 0.2 0.4 0.6 0.8 10 12 14 16 1.8 2.0

Figure 1: A "normalized" edge piece has four degrees of freedom, and it consists of three Bezier curves.
When stitched together like this, they form a single continuous path.

In addition to the four "basic" degrees of freedom, each shape can also be scaled along the x and y axis,
so there are actually six parameters to adjust. Randomly sampled curves in Figure 2 show the extend of
variety in edges. Rasterized low-resolution examples are shown in Figure 3.

0.4 1

0.3

0.2 4

0.1

0.0 4

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 2: Examples of random edge shapes, showcasing all six degrees of freedom.


https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

Niko Nyrhili 2

h__J
.-

s hep

L
L
» i

o 100 200

- -¥w 4 L
- gl ar
» - - 4
- 4 -

et

0

Figure 3: Rasterized examples of random piece edges.

The amount of variation within pixels is visualized in Figure 4. Images’ top corners are always white and
the bottom middle pixel is always black, and on average the middle area is between these two extremes.
Various generated full puzzle pieces are shown in Figure 5. Actually each piece matches the neighboring
four other pieces, so the puzzle is in a solved state. In addition to choosing a random edge shape to each
four sides, there is also an option whether the piece has a "male" or "female" part of the shape. A more
detailed view of the pieces is shown in Fiugre 6.

0 10 20 30 40 50 60

Figure 4: Edge pixel’s variance is largest on the region which has a 50% chance of being either black or
white. Many pixels have a variance of zero.

SFXEEARE LXK
ARG FEEEREE
BRREENEX PN
ERXEMNEEXMYEKEAFEE RN
FEREIREIBFBELBETIEEEHRDN

Figure 5: An example random puzzle, only the top left corner is shown.

i
3§
x4 M

XEEK AEX
s TR F nxKE
L X L LK)
XX
»u»

The network consists of two parts: a shared feature extraction step using 2D convolutions, and a fully
connected decision-making step. This architecture is commonly known as a Siamese neural network. The
feature extraction compresses the input image of size 64 x 64 x 1 to an output of 12 x 12 x 8, having 1152
elements. All activations here are relus. This tensor is then flattened, and a linear layer projects it down
to just 64 dimensions. This final output size is a freely adjustible hyperparameter. A smaller number of
outputs is less prone for overfitting, but naturally at some point the model will only underfit to the data.
Feature extraction steps’ tensor dimensions and the number of layer parameters is listed below.


https://en.wikipedia.org/wiki/Siamese_neural_network
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://keras.io/api/layers/reshaping_layers/flatten/

Niko Nyrhili 3

Figure 6: A more zoomed in view of generated pieces, from the top left corner of the puzzle.

Layer (type) OQutput Shape Param #
(None, 64, 64, 1) 0
conv2d_338 (Conv2D) (None, 62, 62, 16) 160
batch_normalization_1049 (Ba (None, 62, 62, 16) 64
conv2d_339 (Conv2D) (None, 60, 60, 32) 4640
batch_normalization_1050 (Ba (None, 60, 60, 32) 128
max_pooling2d (MaxPooling2D) (None, 30, 30, 32) 0
conv2d_340 (Conv2D) (None, 28, 28, 64) 18496
batch_normalization_1051 (Ba (None, 28, 28, 64) 256
conv2d_341 (Conv2D) (None, 26, 26, 64) 36928
batch_normalization_1052 (Ba (None, 26, 26, 64) 256
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 64) 0
conv2d_342 (Conv2D) (None, 12, 12, 8) 2056
flatten_163 (Flatten) (None, 1152) 0
dense_5 (Dense) (None, 64) 73728

Total params: 136,744
Trainable params: 136,376
Non-trainable params: 368

The "decision" network is trained to predict one of the five cases from two input pieces: either the pieces
do not match, or they match right-to-left, left-to-right, bottom-to-top or top-to-bottom. Examples of these
are shown in Figure 7. This means that the network doesn’t need to consider whether to rotate one or both
of the pieces by 9o, 180 or 270 degrees. It was assumed that this makes the network easier to train and
less prone to overfitting. If also rotations were taken into account, the network would need 17 outputs:
one for a mismatch and 16 for each of the ways the four edges from piece A can be paired with the
edges of piece B. In this solution each piece pair has to be fed to the network four times. Piece A is used
as-is, but the piece B has its image rotated by o, 9o, 180 and 270 degrees. Since softmax normalization is
applied separately for each of the inputs, the concatenated output doesn’t add up to 100%. Hopefully the
networks’ output is "consistent", meaning that it doesn’t claim that the pieces fit together in two different
ways. This hasn’t been checked in the current prototype.



Niko Nyrhili 4

HEIHEANEN
» wXBEXXREE
ik X u Xahy
X0 B HME KX
#Xxnn NEX®

Figure 7: Example input image pairs from the five distinct classes: no match (left) or one pair of the four
edges match without having to rotate either piece. The image also shows that the input resolution is rather
small (64 pixels), causing some of the details be lost. Input images are augmented with random zoom,
translation and rotation to midigate overfitting and having the network to be tolerant of such errors in the
input images.

The decision network’s tensor sizes and the number of layer parameters is shown below. 136744 (96.4%)
of the parameters come from the feature extraction step. The network achieves an accuracy of about 97%.

Layer (type) OQutput Shape Param #
(None, 64, 64, 2) 0
model_1 (Functional) (None, 64, 2) 136744
flatten_2 (Flatten) (None, 128) 0
dense_7 (Dense) (None, 32) 4128
batch_normalization_1089 (Ba (None, 32) 128
dense_1240 (Dense) (None, 16) 528
batch_normalization_1090 (Ba (None, 16) 64
dense_1241 (Dense) (None, 8) 136
batch_normalization_1091 (Ba (None, 8) 32
dense_1242 (Dense) (None, 5) 45

Total params: 141,805
Trainable params: 141,325
Non-trainable params: 480

The fully implemented system would receive a photo of an unsolved puzzle, detect its pieces, rotate them
into "orthogonal" north-south & east-west orientation, feed each pair to the network and solve which pairs
of pieces belong together. This might take significant amount of time, since even a small-ish puzzle of 500
pieces has about 125k pairs to be checked, and remember that each pair has to be run through the network
four times (the other part is rotated in 9o degree increments). However this can be optimized by running
the network in two separate steps: feature extraction and decision making. One only needs to run the
feature extraction for 500 x 4 images, and this accounts for almost 100% of the calculation requirements.
The decision step is very light weight, consisting only of a sequence of dense layers with small inputs.

The last step would be to inspect the predicted puzzle piece matches, and construct the most likely globally
consistent solution to the puzzle. If the false positive rate isn’t too high, there aren’t that many plausible
solutions. Puzzle construcion is naturally very tolerant of false negatives, since it is sufficient that the
piece is correctly matched to two or three of its four neighboring pieces.



