
Nginx docker image for easy file access via HTTP
Description An alternative for SSHFS, Samba shares etc.
Period Spring 2016

Languages & Libs Bash
Tags Docker, Spark, Nginx, GitHub
GitHub nikonyrh/docker-scripts
DockerHub nikonyrh/nginx_bridge

Often I find myself having a SSH connection to a remote server, and I’d like to retrieve some files to
my own machine. Common methods for this include Windows/Samba share, SSHFS and upload to
cloud (which isn’t trivial to do via plain cURL). Here an easy-to-use alternative is described: a single line
command to load and run a docker image which contains a pre-configured Nginx instance. Then files can
be accessed via plain HTTP at the user-assigned port (assuming firewall isn’t blocking it).

I found that writing Dockerfiles is way easier than for example make files, maybe because its operations
closely match those you’d execute via bash anyway when setting up a new box. Additionally there are
convenient published images to base your images on, thus minimizing the number of custom steps you
need to think of and implement.

The implemented docker image is based "FROM nginx:1.9", and just contains a custom nginx.conf and
main.sh files. When docker run -p 1234:80 -v "$PWD:/volume" -d nikonyrh/nginx_bridge is exe-
cuted it starts the container, mounts current working directory to /volume path (could be read-only) and
exposes its contents as Nginx auto-indexed folder at http://localhost:1234. By default access log is
available at http://localhost:1234/logs/logx.txt but it can be disabled with -no-log flag at start-up.
The image is about 190 MB, gzip compresses it down to 72 MB and Dockerhub says it is 75 MB.

Also some efficiency experiments were run. A few gigabytes of JPG images (40 - 400 kB in size) were
transferred and at best 90% of the 1 Gbps bandwidth was achieved. Files were transferred from an
Ubuntu server to a router, to a Windows machine running Ubuntu in a VirtualBox, via curl to /dev/null.
Resulting bandwidth is shown in Figure 1. Parallel execution was achieved via xargs, thus the overhead
of three-way TCP handshake was significant unless the cURL processes fetched multiple images.

Figure 1: Achieved bandwidth on transferring medium-size files over 1 Gb etherned and HTTP.

In conclusion this seems to be a viable way of distributing JPG images to other machines within the LAN
for further processing. The first task might be calculating color histograms of webcam images on different
calendar dates and times of day. Calculation distribution will be handled by the Spark framework. Also it
would be interesting to measure this performance to alternatives such as HDFS.

https://github.com/nikonyrh/docker-scripts
https://hub.docker.com/r/nikonyrh/nginx_bridge/
https://hub.docker.com/r/nikonyrh/nginx_bridge/tags/
http://spark.apache.org/

