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Description Deblurring images with supervised learning
Period Summer 2021

Languages & Libs Python, Keras

Tags Computer Vision

The Finnish Inverse Problems Society (FIPS) organized the Helsinki Deblur Challenge 2021 during the
summer and fall of 2021. The challenge is to "deblur" (deconvolve) images of a known amount of blur,
and run the resulting image through and OCR algorithm. Deblur-results are scored based on how well the
pytesseract OCR algorithm is able to read the text. They also kindly provided unblurred versions of the
pictures, so we can train neural networks using any supervised learning methods at hand. The network
described in this article isn't officially registered to the contest, but since the evaluation dataset is also
public we can run the statistics ourselves. Hyperparameter tuning got a lot more difficult once it started
taking 12 - 24 hours to train the model. I might re-visit this project later, but here its status described as of
December 2021. Had the current best network been submitted to the challenge, it would have ranked 7th
out of the 10 (nine plus this one) participants. There is already a long list of known possible improvements
at the end of this article, so stay tuned for future articles.

In total 17 teams registered to the contest, all of which seem to be from an university. I expected more
individual participants, which is the case in most Kaggle competitions. The dataset is of a very high
quality, and clearly lots of thought went into its design. It consists of 20 different levels of blur, each
of which has 200 pictures. Each photograph shows unique strings, photographed by two cameras. One
camera is always kept in focus, while the other is progressively adjusted to be out of focus. More detail
can be found from their paper. A cropped example for the input, the target and a network’s output is
shown in Figure 1.
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Figure 1: Excample crops from the dataset at a blur step 8: blurred image, an image in proper focus and
the output from a neural network. The output isn’t very easy to read it is much better than the input.

In total there are 20 x 200 x 2 = 8000 images, each of which is 2360 x 1460 = 3.45 megapixels. In the TIFF
format they take 57 GB of space (grayscale, 16 bits of precision), which seem to use lossless compression.
To actually feed them to the neural network they need to be converted into a "raw" numpy array, typically
in-memory. We can save a significant amount of space by keeping just 8-bits of precision, then each image
takes 3.45 MB of RAM. Multiplying this by 8ooo images it still pushes the RAM requirement to 28 GB,
which might not be feasible on a typical desktop. Luckily there are many ways around this.

At first we can reduce the image resolution, since the e-ink display’s pixels seem to correspond to about 8
pixels in the photo. So each image can be scaled down by 1:4 -1 : 8, reducing the memory requirement
by 94 - 98%! A high-res dataset is nice but we don’t need that many pixels for the OCR algorithm to work.
Actually even the official evaluation script scales images down by 50% to improve OCR results.


https://www.fips.fi/
https://fips.fi/HDC2021.php
https://en.wikipedia.org/wiki/Deconvolution
https://en.wikipedia.org/wiki/Optical_character_recognition
https://pypi.org/project/pytesseract/
https://fips.fi/HDCnews.php
https://www.kaggle.com/
https://arxiv.org/pdf/2105.10233.pdf
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The other option is to crop the images further, leaving out the borders which don’t contain any text. This
was originally implemented, but it was later found out that the algorithm confused blurred dark corners
(vignetting, see Figure 2) with heavily blurred text, and produced dark artefacts around the intended text
area. This wouldn’t be that much of an issue for a human, but the OCR mistook these for characters and
generated more than the intended three lines of text as the output. This caused the score to plummet to
zero, since no characters were correctly matched with the known correct output. This is apparent in some
examples of models’ outputs, as shown in Figure 3.

i

Figure 2: The mean and standard deviation of the dataset’s pixels (scaled to between zero and one). Strong
vignetting is apparent in the mean, which caused problems later. All images have three lines of text but
the font size and style has two variations of it.
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Figure 3: Example outputs of different models, except the ones at bottom right which are the sharp and
blurred versions of the dataset before pre-processing. The currently best model’s output is at the top right
corner. Arguably it has the sharpest letters and no black dots near the border.

At this point the discovery process is not narrated in a chronological order, rather the article describes
how the final version of the data processing pipeline and the neural network works.


https://en.wikipedia.org/wiki/Vignetting
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Each image is scaled down by a factor of 1 : 7, dropping the resolution from 2360 x 1460 to 337 x 208.
This leaves characters’ details at a width of just 0.5 - 4 pixels, which might actually be a bit too small. To
midigate the issue with vingetting, each input image goes through a process of estimating the background
brightness at each pixel and then having it subtracted. This is achieved by fitting a low-degree polynomial
flx, X2, Y, yZ, d), where x & y are the image coordinates and d is the distance from the image’s center. Only
pixel values near the border are used to fit this function, because they are known not to contain any text.
A robust least-squares estimate is obtained by first fitting the model to all the data and then discarding
the top 10% of data which does not fit the model. These steps are shown in Figure 4. Not all of the
30.000 border pixels (about 40% of the image area) are needed to fit the simple function, a sufficiently
large sample of 400 - 450 pixels was used.
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Figure 4: Steps of the background normalization (aka. vingetting elimination) are: the input image (top
left), border area sampling (top right), vingetting estimation (bottom left, 6x exaggerated) and the resulting
image (bottom right).

If the input is just a grayscale image, the first few convolution layers wouldn’t have that many interesting
features to extract. This network utilizes a non-linear median filter with a width of 3, 5, 7 and 9 pixels to
augment the input image. Not much hyperparameter-tuning was done on this, but overall it improved
results. Examples of these median-filtered images are shown in Figure 5. Maybe this many small steps is
overkill, and widths of just 3 and 7 pixels is sufficient. Although now it seems obvious that these filters
have the most effect on the least blurred images, and those are the easiest to deblur anyway.

There is also a significant amount of preprocessing done to the target "ground truth" (sharp) images. Their
background is not completely white, but rather at 8o - 85% brightness. However the model’s last activation
is sigmoid, which scales the output to a number between zero and one. Also on previous projects (at least
on a face VAE, not in this blog yet) it was discovered that binary_crossentropy produces sharper images
than MSE. So the target images were re-scaled so that 75% of the pixels are at 100% brightness. Again mild
vingetting started causing issues, but on this context it was midigated in a very different manner than
with the blurred images.


https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Variational_autoencoder
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Figure 5: Blurred images from steps of o to 9 are shown in the top row, and their corresponding median-
filtered versions (kernel width of 3, 5, 7 and 9 pixels) are shown below.

On the target image, non-white pixels (e.g. black or grayscale) are allowed only near completely black
pixels. Vingetting isn’t so extreme that the corners would have even a single black pixel, only gray. These
are still suboptimal for the network’s loss function and the OCR step so it is best to fix them. This simple
heuristic works very well, as is shown on Figure 6.
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Figure 6: Target image preprocessing steps: the original (left), brightness-adjusted (middle) and
vingetting-corrected (right). They gray borders of the right-most image are there just to visualize the
region in which grayscale pixels are allowed, outside them (most importantly the corners) all pixels must
be at 100% brightness. The resulting image consist of mostly 100% black or 100% white pixels, which is
the best target for the binary_crossentropy loss.

Training the network puts a very heavy load on the GPU, and caused UI programs to lag. This isn’t ideal
when the computer is also used for other activities, so each training step was made lighter by splitting
each image into 3 x 5 = 15 overlapping parts. These are shown in Figure 7. Overlap is very important
since the Conv2D layers don’t use any padding, so each subsequent layer reduces the output resolution.
Overlappnig the regions ensures that each available pixel contributes to the loss function, although some
contribute more than others since they are part of multiple cropped samples. Each cropped sample has a
resolution of 110 x 110 pixels. Since the dataset has 4000 input images and we are adding four median-
filtered versions of each image, the input data to the model has dimensions of 60e3 x 110 x 110 x 5.
But actually the model had trouble converging when also the most blurred images were included in the
dataset, so at this stage the model is only trained with up to the blur level 9, and there are 30e3 samples in
total. 10% of the data is used for validation (which is distinct from the competition’s validation dataset).

The network consists of three distinct stages: "preprocessing”, "iterative refinement" and "postprocessing'.
The only novel(?) part is the refinement step, the other two are just basic Conv2D and BatchNormalization
steps. Except the network takes two inputs: the image (along with median-blurred versions of it), and the
blur-step number. The model uses Dense layers at the preprocessing stage, which use the step to tune the
magnitude of extracted features. Its activation is sigmoid so the output is between o and 1, and its output
is multiplied with the Conv2D’s output.

The refinement stage uses a single Conv2D with a tanh activation. The network is kind of a mix between a
ResNet and RNN. Each iteration step’s output is a weighted mean between the network’s previous output
and the shared (recurrent) layer’s output. (edit: as I was writing this I learned about Highway networks


https://en.wikipedia.org/wiki/Residual_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Highway_network
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Figure 7: 3 x 5 cropped areas of the input image. Shown rectangles have a random jitter in their position
so that theyd don'’t all overlap.

which have the same idea.) The weight is adjusted by Dense layers, which again adapt the network to the
blur level. This way the network has only relatively few parameters to fit, and it shouldn’t overfit as easily
as a normal deeply nested convolutional network.

The postprocessing step is a simple convolutional network with a single sigmoid activation at the output,
since we are producing black & white images.

The network has four important hyperparameters to tune: the number of kernels (dimensions) at the
refinement stage, the number of intermediate kernels, the number of refinement iterations and the width
of the shared Conv2D layer. These parameters haven’t been extensively tuned, since it takes at least 12
hours to train the model with a GTX 1080 Ti GPU.

BN = BatchNormalization
dinit = lambda shape, dtype=None: 0.01 * tensorflow.random.normal (shape, dtype=dtype)

im, step = Input(Xs[0].shapel[1:]1), Input (1)

dim, subdim, n_refinements, shared_conv_w = 32, 32, 12, 5
crop = (shared_conv_w - 1) // 2
D = lambda i=dim: Dense(i, activation=’sigmoid’,

kernel_initializer=dinit) (step)[:,None,None,:]

# This is the most important layer, it is used at the refinement stage.

shared = Conv2D(dim, shared_conv_w, activation=’tanh?’)
# Preprocessing

x = im

x = BN()(Conv2D(subdim, 3, activation=’elu’)(x))

x = x * D(x.shapel[-1])

++

These weighted geometric means make more sense if dim != subdim.
= BN () (Conv2D (int ((dim#*#*1 * subdim**3)**(1/4)), 3, activation=’elu’)(x))
x = x * D(x.shapel[-1])

s
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x = BN() (Conv2D (int ((dim#**2 * subdim**2)#*x*x(1/4)), 3, activation=’elu’) (x))
x = x * D(x.shapel[-1])

x = BN()(Conv2D(int ((dim**3 * subdim**1)**(1/4)), 3, activation=’elu’)(x))
x = x * D(x.shapel[-1])

x = Conv2D(dim, 3, activation=’tanh’)(x)

x = x * D(x.shapel[-1])

# Refinement

for _ in range(n_refinements):
d =DQ
x = x[:,crop:-crop,crop:-crop,:] * (1 - d) + shared(x) * d

# Postprocessing

x = BN()(Conv2D (int ((subdim * dim)**0.5) , 1, activation=’elu’)(x))
X

x

BN() (Conv2D(8, 1, activation=’elu’) (x))
Conv2D(1, 1, activation=’sigmoid’) (x)

model = Model ([im, stepl, x)

The model’s summary is shown below, with some uninteresting layers ommitted such as BatchNormalization:

# Input image
input_7 (InputLayer) [(None, 110, 110, 5) O

# Input step number
input_8 (InputLayer) [(None, 1)] 0

# Preprocessing

conv2d_28 (Conv2D) (None, 108, 108, 32) 1472 input_7 [0] [0]
dense_45 (Dense) (None, 32) 64 input_8[0][0]
conv2d_29 (Conv2D) (None, 106, 106, 32) 9248 tf.math.multiply_75[0][0]
dense_46 (Dense) (None, 32) 64 input_8[0] [0]
conv2d_30 (Conv2D) (None, 104, 104, 32) 9248 tf.math.multiply_76 [0] [0]
dense_47 (Dense) (None, 32) 64 input_8[0] [0]
conv2d_31 (Conv2D) (None, 102, 102, 32) 924 tf.math.multiply_77 [0][0]
dense_48 (Dense) (None, 32) 64 input_8[0][0]
conv2d_32 (Conv2D) (None, 100, 100, 32) 9248 tf.math.multiply_78 [0][0]
dense_49 (Dense) (None, 32) 64 input_8[0][0]

# Refinement
conv2d_27 (Conv2D) multiple 25632 tf.math.multiply_79[0][0]
dense_51 (Dense) (None, 32) 64 input_8[0][0] # repeated 12 times

# Postprocessing

conv2d_33 (Conv2D) (None, 52, 52, 32) 1056 tf.__operators__.add_41[0][0]
conv2d_34 (Conv2D) (None, 52, 52, 8) 264 batch_normalization_22[0][0]
conv2d_35 (Conv2D) (None, 52, 52, 1) 9 batch_normalization_23[0][0]

Total params: 67,185
Trainable params: 66,849
Non-trainable params: 336
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After training with Adam optimizer (learning rate = 10~2°) for 12 hours the binary_crossentropy error
was 0.0833169 for the trainign set and 0.1285431 for the validation. The model was still converging, and a
better results would be obtained by letting the training to run for longer. Although it is a bit concerning
that the validation error is so noticeably higher than the fitting error.

An example of the model’s output is shown in Figure 8, for varying blur levels (aka,. steps). Figures 9 -
16 show how the "step" parameter affects the output. It seems very important that this parameter is set
correctly. If this network was used to deblur images with an unknown blur level, the whole range would
need to be tested and the best one must be picked manually, or based on some heuristic.
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Figure 8: Examples of the cropped input image, the target sharp image and the model’s output. Inputs
have a blur step between 3 and 9.
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Figure 9: Example outputs with a blur level 2. The correct deblur level is indicated by a gray background
on this and other examples.
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Figure 10: Example outputs with a blur level 3.
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Figure 11: Example outputs with a blur level 4.
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Figure 12: Example outputs with a blur level 5. This illustrates nicely what happens if the network is
told to deblur too small or too large details. With a correct deblur level the output is very easy to read,
although it isn’t perfectly crisp either.
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Figure 13: Example outputs with a blur level 6.
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Figure 14: Example outputs with a blur level 7.
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Figure 15: Example outputs with a blur level 8.
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Figure 16: Example outputs with a blur level 9.

The contest (or "challenge") was overall very well organized, and the validation dataset came with a twist:
unlike the previously released dataset which only contained alphabetical characters, the new dataset had
also digits. This means that the network cannot be trained to always produce alphabetical outputs, but
rather it has to be a more general algorithm. Full results can be found from the website, but in conclusion
out of the 17 teams which registered to the contest, only nine submitted their final results according to the
rules (on time and open sourced on GitHub). If I had entered the contest it would make ten of us, and the
current (unoptimized) solution would have been at the 7th place, beating three submitted solutions. Most
of the solutions could deblur images up to step 10 and more, and the top two reached amazing steps of
18 and 19 which look just plainly impossible!
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Figure 17: OCR accuracy results of the training dataset. Note that the largest used blur was the step 9, but
already there the mean accuracy (60.4%) was below the competition’s threshold of 70%. The x-axis shows
different percentiles, except the values at 50 are replaced with the mean.
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Figure 18: OCR accuracy results of the validation dataset (10% of the used data) Here the model could
pass the blur step 7, with a mean accuracy of 76.2%.
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Figure 19: OCR accuracy results of the competition’s validation dataset As with the other validation
dataset, here the model could pass the blur step 7, with a mean accuracy of 77.0% This indicates that
the network didn’t overfit to alphabetical inputs but can also correctly deblur digits. On the other hand
validation error is noticeably higher than train error.

Summary of the results are shown in Table 1. There is some random variation between tightly contested
models, and their rank depends on which blur step is examined. At steps 4, 6 and 8 the described

algorithm in this paper was ranked at places 5th, 6th and gth from the top.
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Table 1: Competition results (the stop step) and mean scores at blur steps 4, 6 and 8. *Note that this
network was not actually submitted to the competition. But the official validation set was not used to train it or to
do hyperparameter tuning, so the comparison is fair.

step 4 step 6 step 8

Team University stop score  rank score  rank score  rank
1st | 15_A  Technische Universitit Berlin, GER 19 94.53 3 94.03 2 93.12 1
2nd | 12. B National University of Singapore 18 94.75 2 92.62 3 92.62 2
3rd | o1 Leiden University, NL 14 94.92 4 91.75 4 91.65 3
4th | 11.C  University of Bremen, GER / UK 10 9222 6 87.78 5 81.25 5
sth | 06 Heinrich Heine Uni. Disseldorf, GER 10 96.40 1 94.33 1 85.92 4
6th | 13 Federal University of ABC, BRA 7 91.45 7 71.12 8 67.12 7
7th* | - Niko Nyrhild, FIN 7 94.50 5 81.08 6 60.80 9
8th | 16_B  Technical University of Denmark 6 90.20 8 76.45 7 68.35 6
oth | o4 Dipartimento di Sciente Fisiche, ITA 5 8245 9 68.00 9 6285 8
1oth | 09_B  University of Campinas, BRA 2 16.15 10 6.33 10 2.27 10

There remains several areas to be improved upon, some of which might result in a higher rank:

e More hyperparameter tuning, including different activation functions.
e Train the model as long as it taks, do not limit to 12 hours.
e Speed up the training by showing fewer samples of the easier blur levels, the model architecture

seems to interpolate between them very well. Maybe this could be a dynamical process which
happens automatically during training?

e Switch to a lower learning rate upon initial convergence, do not use the fixed 1072°.
e Use further blur steps for training, do not limit to steps o - 9. If convergence is an issue one could try

to adjust sample weights so that initially the least blurred images are weighted more. More blurred
images would be used mainly for fine-tuning.

Down-scale images less than by a factor of 1 : 7, so that character details are black & white rather
than grayscale.

Include sharp images’ % and % as an additional target to the network’s output, maybe it would
provide stronger gradients and the network would learn faster?

Reduce overfitting by data augmentation, ideally the network would be rotation-invariant.

Add dropout, either the standard or the 2D variant. The dropout rate is yet an other hyperparameter.
Try regularization as well, especially the shared layer which has the most parameters.

Current pre-processing steps aren’t ideal, the model should learn not to get confused by vingetting.
Use an other network architecture like an U-net to get local and global context, although it is closer
to cheating at this point since such network was the contest winner.

But if it takes 24 hours to train the network, it will take quite a long time to find the optimal mix of even
some of these options. At least it is trivial to parallelize, and consumer GPUs are still getting faster. The
used GTX 1080 Ti is from 2017, so it is already 4 years old as of 2021.


https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/spatial_dropout2d/
https://github.com/theophil-trippe/HDC_TUBerlin_version_1

