
Benchmarking Elasticsearch and MS SQL on NYC Taxis
Description Studying a few filtering and aggregation conditions
Period Spring 2017

Languages & Libs Clojure
Tags GitHub, Databases, Elasticsearch, SQL
GitHub nikonyrh/nyc-taxi-data

The NYC Taxi dataset has been used on quite many benchmarks (for example by Mark Litwintschik),
perhaps because it has a quite rich set of columns but their meaning is mostly trivial to understand. I
developed a Clojure project which generates Elasticsearch and SQL queries with three different templates
for filters and four different templates of aggregations. This should give a decent indication of these
databases performance under a typical workload, although this test did not run queries concurrently and
it does not mix different query types when the benchmark is running. However benchmarks are always
tricky to design and execute properly so I’m sure there is room for improvements. In this project the tested
database engines were Elasticsearch 5.2.2 (with Oracle JVM 1.8.0_121) and MS SQL Server 2014.

The first filter combines a random range query on a 14-days long interval between 2013-01-01 and 2016-
12-01 with a randomly positioned 2 x 2 km bounding box on the pickup position. Naturally this results
in a random number of matching trips, but this is taken into account by plotting query times against the
number of matching rows. 25th, 50th and 75th percentiles on the number of matching trips for this filter
were about 50, 7k and 100k. This high dynamic range asks for log-log plots for visualization.

The second type of filter consists of three parts. The first one is a random 60-day long interval between
2013-01-01 and 2016-10-01. Second criterion is the amount of paid tip, having the starting value ranging
from 0 to 15 dollars and the interval length was 2 dollars. The third criterion was the day of week,
indicated by an integer between 1 and 7. The 25th, 50th and 75th percentiles were 9k, 38k and 232k.

The last type of filter combines a range query on the travel duration in hours starting from 0 - 3 hours and
having the length of 15 minutes with a terms query on the exact number of passengers (random integer
from 1 to 6). The 25th, 50th and 75th percentiles on these criteria are 1k, 21k and 738k.

An other important part of each query is that which statistics should be calculated from matching rows.
On this set of benchmarks I have implemented four different aggregations. This first one is very trivial,
it simply counts the number of matching rows. This sets a good baseline for performance measurements,
and one would expect that calculating more complex results wouldn’t be any faster than this one.

The second aggregation groups results by company (either Green or Yellow) and pickup date (1 day time-
resolution), and for each bucket it calculates stats (min/max/sum) of the ad-hoc calculated USD / km
metric (total paid divided by the kilometers travelled). The third aggregation groups trips by the time of
day it started (2 hours time-resolution) and for each bucket calculates stats on the total amount of paid /
trip. The fourth aggregation groups results by the pickup date (1 day time-resolution) and for each bucket
calculates various percentiles on trips average velocity (km/h).

The dataset consists of 874.3 million rows of data and has 27 columns. On Elasticsearch the start and
dropoff locations were stored as geo-point type, but on SQL Server they were stored as too separate
float fields. It would have its own Point geospatial column type but its usage seemed quite verbose so
I decided to ignore it for now. Data on Elasticsearch was stored into 1 index / company & year and 10

shards, pushing the total number of shards to 120 and keeping the average shard size at about 2.4 GB.
Data at SQL server was kept at a single table with clustered columnstore index, and data partitioned into
separate files by year (see details at my notes). Total size on disk was 40.5 GB. Elasticsearch shards were
force-merged down to 8 segments, and SQL column store index was reorganized to reduce fragmentation.

Elasticsearch was running on an Intel 6700K CPU, 64 GB of RAM and data was two SSDs in RAID-0 mode.
32 GB and 16 GB benchmarks were executed by having a Virtualbox instance running with 32 or 48 GB
of RAM allocated to it, thus preventing it being used by Elasticsearch or OS caches. It would have been
better to remove the RAM from the motherboard but I did not want to go through the extra trouble.

https://github.com/nikonyrh/nyc-taxi-data
http://tech.marksblogg.com/benchmarks.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-range-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.3/query-dsl-geo-bounding-box-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.3/query-dsl-terms-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-stats-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.3/search-aggregations-metrics-percentile-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html
https://docs.microsoft.com/en-us/sql/t-sql/spatial-geography/point-geography-data-type
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://github.com/nikonyrh/nyc-taxi-data/blob/master/notes/mssql/notes.sql
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-defragmentation
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Unfortunately I had to use a different machine to run MS SQL Server. However it was quite comparable,
having Intel 4770, 32 GB of RAM and a SSD for the data. Troughout benchmarks the SSD IO was the
bottneleck, maxing out at 450 - 500 MB/s while CPU usage was 20 - 30%. One can guesstimate that with
RAID-0 SSDs you could drop query times by 50% on some cases. Also it would be benefitical to have
tempdb on a separate SSD from the data.

Results from different filter-aggregation combinations are shown infigures 1 - 3. Filters are chosen at
random at each run of the benchmark, which means that number of matches varies a lot. Thus I chose a
bit unorthodox method of visualizing the results: x-axis is percentiles (1 to 99) on the number of matching
rows and y-axis is percentiles on query runtimes. I did not check the rank correlation between these
values but I expect it to be reasonably high. On all graphs the green line is the SQL Server with 32

GB of RAM, blue is Elasticsearch with 16 GB, yellow is ES with 32 GB and purple is ES with 64 GB of
RAM. Interestingly doubling the memory from 32 GB to 64 GB dropped query times by about 50% with
Elasticsearch. SQL Server performed best with simpler aggregations, and performed relatively worst on
the first filter type (presumably for not using a spatial index on lat/lon data) and the last aggregation type,
in which percentiles were calculated. At worst SQL Server was 10 - 40 times slower than Elasticsearch.

Figure 1: Results from the filter template #1.

Figure 2: Results from the filter template #2.

Figure 3: Results from the filter template #3.

https://en.wikipedia.org/wiki/Rank_correlation

